

Space Communications Protocol Standards Overview

Robert Durst
The MITRE Corporation
(703) 883-7535
durst@mitre.org

6 April 1998

SCPS Project: A Joint DoD/NASA Effort

Motivation

- Help mitigate the resource constraints (e.g., dollars, personnel) on government programs
- Foster cooperation and interoperability across mission, agency, and national boundaries

Goals

- Determine feasibility of standardizing end-to-end data communications across civil and military space systems
- For cases where standardization is feasible, establish <u>common standards</u>

Means

 Form the Space Communications Protocol Standards (SCPS) Technical Working Group (TWG) to fulfill the above goals

- AIAA-brokered introductions between NASA and USSPACECOM in the Fall of 1991
- 1992 NASA/DOD meetings, NASA participation in GPALS TIM
- 1993-1994 SCPS Phase 1 Exploration and Definition
 - Investigate requirements and protocol capabilities
- 1995-1997 SCPS Phase 2 Development
 - Specification, implementation, and test
- 1998 -> SCPS Phase 3 Deployment
 - Roll-out and standards finalization

- Reduction in budgets, reduction in size of individual missions
- Increased reliance on cooperation/interoperability across mission, agency, and national boundaries
- Pressure to reduce operations budgets through shared infrastructure and increased automation
- Strong pressure to use COTS technology

- Mission Operations Control Architecture
 - A family of industrially-derived application-layer protocols for standard command and control of both spacecraft and their supporting ground networks
 - Layered on top of SCPS protocols
- Efficient modulation techniques
 - Attempting to accommodate demands for greatly increased data rates coupled with government RF spectrum encroachment
 - Part of an overall efficiency thrust involving spectrum, communications protocols and applications
 - Layered below SCPS protocols -- SCPS a major factor in achieving efficient communications

Operating Environments

- SCPS protocols were *originally* conceived for communication in which a spacecraft served as one endpoint of the communication
- Original requirements included cross-linked satellite systems, such as Brilliant Eyes, Teledesic, etc.
- Striking similarities were noted between the constraints that satellites face and those of mobile/wireless tactical communication -- solutions applicable to those environments as well
- Immediate utility to SATCOM environments
- Following slides illustrate these environments

Non-networked SATCOM Environment

Distinguishing features:

- Satellite provides relay only
- End Systems do not contend for access to satellite link (all managed)

Networked SATCOM Environment

Non-crosslinked TT&C Environment

Crosslinked TT&C Environment

Tactical Communications Environment

Protocol Overview

The SCPS Network Protocol (SCPS-NP)

The SCPS Security Protocol (SCPS-SP)

The SCPS Transport Protocol (SCPS-TP)

The SCPS File Transfer Protocol (SCPS-FP)

SCPS Capabilities

Core = Interoperable Internet FTP

Record read & record update; File & record Integrity; Automatic restart; User suspend/resume; Suppress ASCII reply codes.

SCPS FILE TRANSFER PROTOCOL (SCPS-FP)

7

4

3.5

3

(Optional)

SCPS TRANSPORT PROTOCOL (SCPS-TP)

SCPS SECURITY PROTOCOL (SCPS-SP)

(Optional)

SCPS NETWORK PROTOCOL (SCPS-NP)

(Optional)

Underlying Link Protocol

SCPS sits on top of existing link capabilities, and augments them

Core =
Interoperable
Internet
TCP/UDP

Congestion control appropriate for mixed-loss environments (congestion, corruption, outage); Selective negative acknowledgment; Robust header compression; Window scaling ("long/fat pipes"); Partial Reliability service (BETS); Delimitation of record boundaries; Time stamping for high rate sequencing, delay measurement.

Authentication: guarantee of the identity of a source; Access Control: prevention of unauthorized access; Integrity: protection against modification; Confidentiality: protection from disclosure.

Provide both connectionless and managedconnection routing;

Support precedence (priority) based handling;

Offer multiple routing options;

Signal errors to the layer above;

Support packet lifetime control;

Scaleable - tailor capability to need, e.g., high communications efficiency in constrained bandwidth conditions.